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Abstract 8 

The changing climate and the associated future increases in temperature are expected to have 9 

impacts on drought characteristics and hydrologic cycle. This paper investigates the projected 10 

changes in spatiotemporal characteristics of droughts and their future attributes over the 11 

Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed using 12 

two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 models 13 

from two future scenarios (RCP4.5 and RCP8.5) for 30 years of historical period (1970-1999) 14 

and 90 years of future projections (2010-2099). Hydrologic modeling is conducted using the 15 

Precipitation Runoff Modeling System (PRMS) as a robust distributed hydrologic model with 16 

lower computational cost compared to other models. Meteorological and hydrological droughts 17 

are studied using three drought indices (i.e. Standardized Precipitation Index, Standardized 18 

Precipitation Evapotranspiration Index, Standardized Streamflow Index). Results reveal that 19 

the intensity and duration of hydrological droughts are expected to increase over the WRB, 20 

notwithstanding that the annual precipitation is expected to increase. On the other hand, the 21 

intensity of meteorological droughts do not indicate an aggravation for most cases. We explore 22 

the changes of hydrometeolorogical variables over the basin in order to understand the causes 23 

for such differences and to discover the controlling factors of drought. Furthermore, the 24 

uncertainty of projections are quantified for model, scenario, and downscaling uncertainty.  25 

Keywords: 26 

Drought, PRMS, SPI, SPEI-PM, SSI, Willamette   27 
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1 INTRODUCTION 28 

Dry soil and low water table in aquifers, reservoirs, lakes, and rivers are all different 29 

reflections/types of drought. Drought is a complex phenemonen listed among severe natural 30 

hazards developing slowly and affecting large areas as compared to the eye-catching flash-flood 31 

events (Dai, 2012; Demirel et al., 2013; Van Loon and Van Lanen, 2013). Drought can hamper 32 

river navigation, water supply, agriculture, hydropower generation, and increase the risk of 33 

forest fire and mortality of livestock (Chen and Sun, 2017; Sun et al., 2015a; Turner et al., 34 

2015). 35 

Scientific reports on drought risk have pointed out the importance of these events and the need 36 

for more efforts to investigate the spatiotemporal development of both meteorological and 37 

hydrological droughts in addition to the floods (Van Loon, 2015; Vicente-Serrano et al., 2015). 38 

Especially after the unprecedented hot winter recorded in 2014 in the PNW, drought in Oregon 39 

attracted significant attention from the media. Therefore, it is of interest to assess the impacts 40 

of climate change and anthropogenic warming on meteorological and hydrological droughts in 41 

the Willamette River Basin, as one of the most populated basins in the region, and identify the 42 

linkages between these two types of droughts, and also quantify the uncertainty in future 43 

projections. 44 

Previous studies have shown that under climate change scenarios, future annual precipitation is 45 

expected to increase over the Pacific Northwest US (Ahmadalipour et al., 2017a; Mote and 46 

Salathé, 2010; Rana and Moradkhani, 2015). Moreover, the seasonality and spatial distribution 47 

of precipitation will also change (Feng et al., 2013; Jiang et al., 2016), which makes it difficult 48 

to provide a clear conclusion of the effects of climate change on meteorological droughts. 49 

Furthermore, the increase in temperature will affect several hydrological processes such as 50 

evapotranspiration and snowmelt (Diffenbaugh et al., 2013; Sima et al., 2013). This makes 51 

assessing hydrological droughts more challenging as streamflow is an integral variable of 52 
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precipitation, evaporation, snowmelt, and soil moisture (Berghuijs et al., 2014; Mazrooei et al., 53 

2015). Therefore, analyzing various drought indices that consider different parameters is 54 

important for drought-prone areas. 55 

Quantifying hydrological drought as an independent phenomena has received a lot of 56 

consideration, since there is usually no direct relationship between meteorological and 57 

hydrological droughts in terms of intensity, duration, and onset (Hannaford et al., 2011). Van 58 

Loon (2015) described the temporal lag among different types of drought, and demonstrated 59 

the importance of analyzing hydrological drought. 60 

There are a number of indices developed for assessing droughts. Schyns et al. (2015) reviewed 61 

and classified numerous drought indices, most of which are estimated using a combination of 62 

precipitation, temperature, potential evaporation (PE) or potential evapotranspiration (PET), 63 

soil moisture, runoff, and streamflow. For example, Sohrabi et al. (2015) developed a new soil 64 

moisture drought index to characterize droughts. Furthermore, few studies have reviewed the 65 

application of remotely sensed observations for drought monitoring purposes (Ahmadalipour 66 

et al., 2017b; Anderson et al., 2013). The appropriate index is selected based on the targetted 67 

type of drought as the calculation may differ significantly among indices. 68 

Several studies have shown the role of temperature in drought (Ahmadalipour et al., 2016; 69 

Diffenbaugh et al., 2015; Shukla et al., 2015; Williams et al., 2015). To better understand the 70 

impact of global warming on drought, it is recommended to account for temperature effects as 71 

well (Dai, 2011; Jeong et al., 2014; Strzepek et al., 2010). Recently, Ahmadalipour et al. (2016) 72 

conducted a comprehensive assessment of future drought projections at seasonal timescale. 73 

They used SPI and SPEI calculated from downscaled GCMs to investigate the changes in 74 

drought characteristics over the contiguous United States (CONUS) with and without 75 

considering the role of temperature, as a means to better assess drought in a warming climate. 76 

They found intensifying drought condition in western United States, and identified the 77 
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superiority of SPEI over SPI, as the former accounts for potential evapotranspiration (PET) 78 

variations. 79 

Abatzoglou et al. (2014) used several drought indices to evaluate the interannual streamflow 80 

variability and hydrometeorological drought occurrences in the U.S. Pacific Northwest over the 81 

historical period of 1948-2012. They found that the indices computed using high-resolution 82 

climate surfaces explained over 10% more variability than metrics derived from coarser-83 

resolution datasets. Jung and Chang (2012) used eight CMIP3 GCMs (Coupled Model 84 

Intercomparison Project Phase 3 Global Climate Models) and applied SPI and SRI to analyze 85 

the changes in probability of future drought across different regions of Willamette Basin and 86 

assessed the spatial patterns. They concluded that the decrease in summer precipitation and 87 

snowmelt are the main factors causing an increase in the number of short-term droughts. 88 

Most of the above efforts have focused on the development of a new drought index or the 89 

assessment of climate change impact on specific indices (Azmi et al., 2016; Kharin et al., 2013; 90 

Safeeq et al., 2014). Relationship and differences between meteorological and hydrological 91 

droughts using various scenarios and ensemble of downscaled climate model outputs has not 92 

been explicitly assessed in many studies, and a lot of studies only consider one type of drought. 93 

This is an important issue which can better indicate the socio-economic impacts of climate 94 

change, and it has not been investigated extensively over the Willamette Basin. 95 

The objective of this study is to assess the historical and future characteristics of meteorological 96 

and hydrological droughts over the Willamette River Basin in the Pacific Northwest U.S. We 97 

aim to investigate the changes of drought characteristics in a region with abundant water 98 

resources, which is expected to receive even more precipitation in future.  Moreover, by 99 

utilizing different combinations of GCMs, concentration pathways, and downscaling methods, 100 

we address the uncertainties arised from these sources.  101 
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The paper is organized as follows: study are and data are explained in the next section, followed 102 

by explanation of hydrologic model calibration and the attributes of drought indices in the 103 

methodology section. Then, the results for meteorological and hydrological drought 104 

characteristics are provided in the results section and discussed afterwards, and the main 105 

findings of the study are summarized at the end. 106 

2 STUDY AREA AND DATA 107 

The study area is the Willamette River Basin (WRB) with a drainage area of 29,700 km2 near 108 

the Cascade Mountains in Western Oregon, U.S. (Halmstad et al., 2013). The basin is a  densely 109 

populated river basin accommodating more than 3 million inhabitants and 25 dams (Jung and 110 

Chang, 2012). It is located between a low lying valley and high cascade ranges, with temperate 111 

marine climate. The basin elevation varies from 65 to 3106 m (Figure 1) and mean annual 112 

precipitation varies from about 1000 mm to above 3000 mm at different regions of the basin. 113 

More than half of the basin (~68%) is covered by forests, around 20% is used for agriculture, 114 

and the remaining 12% is urbanized area (Jung and Chang, 2012).  115 

-------------------------------- 116 

Figure 1. The Willamette River Basin located in the Pacific Northwest, U.S.  117 

-------------------------------- 118 

2.1 Observation data 119 

In this study, we have used naturalized streamflow series, i.e. the No Regulation No Irrigation 120 

(hereafter called NRNI data), at 20 calibration points at the outlet of homogeneous response 121 

units to calibrate the Precipitation Runoff Modeling System (PRMS) model 122 

(http://www.bpa.gov/power/streamflow/default.aspx). In addition to the streamflow data, we 123 

have utilized gridded daily precipitation (Pr) and daily maximum and minimum temperature 124 
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(Tmax and Tmin) data from the University of Idaho (Abatzoglou and Brown, 2012) as well as 125 

the climate forcing dataset provided by Livneh et al. (2013). The gridded meteorological forcing 126 

data is spatially averaged over the HRUs using the USGS Geo Data Portal 127 

(http://cida.usgs.gov/gdp/) for hydrologic modeling purposes. 128 

2.2 Downscaled and bias-corrected climate model outputs 129 

Statistically downscaled and bias-corrected climate data from 10 Global Climate Models 130 

(GCMs) participating in CMIP5 (Taylor et al., 2012) are utilized here (Table 1). These GCMs 131 

are selected according to a multivariate statistical framework reported by Ahmadalipour et al. 132 

(2015). All 10 GCMs were downscaled to 1/16 degree spatial resolution using the Bias 133 

Correction and Spatial Disaggregation (BCSD) method (Wood et al., 2002) generated at 134 

Portland State University (Rana and Moradkhani, 2015). In addition, another downscaled 135 

product, i.e. Multivariate Adaptive Constructed Analogs (MACA) (Abatzoglou and Brown, 136 

2012), is used in our comparative study. Data for MACAv2-Livneh is downloaded from the 137 

MACA website at http://maca.northwestknowledge.net/. All the models and data are acquired 138 

and used at a daily timescale. The RCP4.5 and RCP8.5 scenarios from both BCSD and MACA 139 

ensembles are used for future projections. The historical period of 1970–1999 and future period 140 

of 2010–2099 are considered for the analysis. Similar to the observed gridded input data, BCSD 141 

and MACA data are also averaged over the HRUs using the USGS Geo Data Portal in order to 142 

run the hydrologic model and analyze the simulated discharge over the WRB. 143 

-------------------------------- 144 

Table 1. The 10 GCMs used in this study and their characteristics.  145 

-------------------------------- 146 
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3 METHODOLOGY 147 

The observed and simulated precipitation, Tmax, Tmin, and wind data from 20 GCMs (10 148 

BCSD and 10 MACA) were used to assess the historical and future characteristics of 149 

meteorological droughts in the WRB. Using the climate forcing from 20 GCMs as input to 150 

PRMS hydrologic model, the streamflow is simulated and used to address the changes in 151 

hydrological droughts. Further, a comparison is carried out between meteorological and 152 

hydrological drought characteristics in order to better understand the impacts of climate change. 153 

3.1 Hydrologic Modelling 154 

The US Geological Survey’s Precipitation Runoff Modelling System (PRMS) is a physically 155 

based semi-distributed hydrologic model utilized in this study to simulate historical and future 156 

streamflow in the Willamette basin (Leavesley et al., 1995). The PRMS runs at a daily time 157 

step and requires daily precipitation, and minimum and maximum air temperature averaged 158 

over the user-defined homogeneous response units (HRUs). The model has been successfully 159 

applied in numerous studies to model the watersheds and assess the effects of land use and 160 

climate change (Jung et al., 2011; Legesse et al., 2003; Najafi et al., 2011; Risley et al., 2011). 161 

The HRUs correspond to grid cells in distributed hydrologic models, as they are considered 162 

homogeneous units which can produce and exchange flow between each other, connected to 163 

the atmosphere and to the river network consisting of stream segments and lakes (Risley et al., 164 

2011). 165 

3.2 Model Calibration and Validation  166 

In total, 669 HRUs (shown in Figure 1) were delineated based on the national Geospatial Fabric 167 

database created by the USGS National Research Program, Denver, Colorado using 168 

topographic, hydrographic, land use, soil, and vegetation data layers. The HRUs were defined 169 

by Points of Interest (POIs) which include USGS flow gages, NWS forecast sites, 500m 170 
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elevation bands, travel times less than one day, and major confluences.  Downstream sub-basins 171 

(i.e. total of 20 sub-basins) were calibrated with estimated no-regulation no-irrigation (NRNI) 172 

streamflow data. Calibrated model parameters are described in Table 2.  173 

-------------------------------- 174 

Table 2. The parameters calibrated in each step of the calibration process. 175 

-------------------------------- 176 

For the calibration, a USGS calibration tool (i.e. LUCA) was used. LUCA (Hay et al., 2006; 177 

Hay and Umemoto, 2007) is a wizard-style user-friendly GUI providing a systematic way of 178 

building and executing a multiple-objective, stepwise, automated calibration based on the 179 

Shuffled Complex Evolution global search algorithm (Duan et al., 1993). Historical streamflow 180 

data for the period of 1979-2003 and 2004-2008 were used to calibrate and validate the model, 181 

respectively. The calibration and validation of the PRMS were performed using four different 182 

measures, i.e. Kling-Gupta Efficiency (KGE) measure (Gupta et al., 2009), Nash-Sutcliffe 183 

Efficiency (NSE) measure (Nash and Sutcliffe, 1970), Root Mean Square Error (RMSE), and 184 

Bias. 185 

3.3 Drought indices 186 

Several drought indices have been used by various researchers to characterize different types 187 

of drought. For this study, we have used Standardized Precipitation Index (SPI) (McKee et al., 188 

1993), Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 189 

2010), and Standardized Streamflow Index (SSI) (Nalbantis and Tsakiris, 2009; Shukla and 190 

Wood, 2008). The SPI and SPEI assess meteorological drought, whereas SSI characterizes the 191 

hydrological drought. It should be noted that the indices are developed in a standardized form; 192 

therefore, they consider the same thresholds.  193 
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3.3.1 Standardized Precipitation Index (SPI) 194 

The SPI, introduced by McKee et al. (1993), is one of the most widely used drought indices 195 

which quantifies the deviation of precipitation from historical mean for a region. It is one of the 196 

primary drought indices used operationally by the World Meteorological Organization (WMO) 197 

and the National Drought Mitigation Center for drought monitoring (Huang et al., 2015; Swain 198 

and Hayhoe, 2015). A SPI of zero indicates that rainfall is equal to the mean of historical record.  199 

In this study, SPI is calculated for 12-month accumulation period using non-parametric Weibull 200 

plotting position as follows:  201 

����� =
�

��	
           (1) 202 

where i is the rank of precipitation from smallest to largest, n denotes the sample size, and ����� 203 

is the empirical probability. Then, ����� is transformed into the standard normal function with 204 

zero mean and standard deviation of one, which will be considered as the SPI value. 205 


�� = �
	���         (2) 206 

3.3.2 Standardized Precipitation Evapotranspiration Index (SPEI) 207 

SPEI was developed by Vicente-Serrano et al. (2010), and has been applied in numerous 208 

studies. The procedure to calculate SPEI involves a climatic water balance, and it considers the 209 

role of temperature in drought assessment. SPEI is based on variations in the deficit of 210 

precipitation and potential evapotranspiration (P-PET). Previously, Palmer Drought Severity 211 

Index (PDSI) (Palmer, 1965) was introduced considering variations in several supply/demand 212 

variables of hydrologic cycle. However, PDSI lacks the multi-scalar feature and needs 213 

calibration to be used in different locations (Vicente-Serrano et al., 2010). Furthermore, PDSI 214 

is not a standardized index and does not follow the same thresholds as other standardized 215 

drought indices.  216 
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Various methods have been proposed for calculating PET. Some studies have compared the 217 

methods for calculating PET (Lu et al., 2005; Sheffield et al., 2012), and it has been shown that 218 

Penman-Monteith (PM) (Allen et al., 1998) method provides more accurate results because of 219 

having a more physically-based formulation of atmospheric evaporative demand (Donohue et 220 

al., 2010).  Therefore, our SPEI calculation is based on Penman-Monteith equation with the 221 

Hargreaves-Samani modification (Hargreaves and Samani, 1985) as described in the FAO-56 222 

(Allen et al., 1998). The chosen PM method is recommended by World Meteorological 223 

Organization (WMO) as the standard technique for estimating PET, and it has been proven to 224 

be accurate with low data requirements (Stagge et al., 2015). 225 

After calculating PET, the deficit (D) will be calculated as the difference between precipitation 226 

and potential evapotranspiration: 227 

�� = �� − ����         (3) 228 

D will then be accumulated on 12-month timescale (starting at each month), and is used to 229 

calculate SPEI for each month. Various studies have utilized different distribution functions to 230 

calculate SPEI such as L-moment ratio diagrams (Vicente-Serrano et al., 2010), Log-logistic 231 

(Touma et al., 2015), and GEV (Stagge et al., 2015). Here, the Weibull function (equation 1) is 232 

utilized to calculate SPEI from the deficit calculated by equation 3. Similar to SPI, SPEI is also 233 

calculated at 12-month accumulation period for each grid cell and for each GCM. 234 

3.3.3 Standardized Streamflow Index 235 

Researchers have developed standardized hydrological drought indices similar to those 236 

available for meteorological drought. Two of the most well-known standardized hydrological 237 

drought indices are the Standardized Runoff Index (SRI) (Shukla and Wood, 2008), and 238 

Streamflow Drought Index (SDI) (Nalbantis, 2008; Nalbantis and Tsakiris, 2009). These two 239 

indices have similar theoretical background as both try to transform monthly streamflow into 240 
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standardized normal distribution (with zero mean and unit variance, similar procedure as in 241 

SPI) and calculate hydrological drought index.  242 

In this study, we have utilized Standardized Streamflow Index (SSI) calculated based on non-243 

parametric approach. The procedure is simple and similar to that explained for SPI; the 12-244 

month accumulated streamflow values for each month are assessed separately, and SSI is 245 

calculated for each month. The benefit of this approach is that it is less subjective than 246 

distribution fitting methods, and it results in a standardized hydrological drought index which 247 

can be classified and compared to meteorological drought results. 248 

All drought indices are calculated using the non-parametric Weibull function (described in 249 

section 3.3.1) for the 12-month accumulation period. Since the study period is 120 years (30 250 

years of historical and 90 years of future period), investigating variations in 12-month indices 251 

can reveal the possible mid to long-term changes and trends induced by climate change. SPI 252 

and SPEI are calculated for each of the 1/16 degree grids, and SSI is calculated using the 253 

streamflow at the outlet of the basin. 254 

3.4 Drought classification 255 

The classification of drought and corresponding probability for each class are according to 256 

McKee et al. (1993). Since all the three drought indices used in this study are standardized 257 

indices, they have the same thresholds for each category. The categories are defined based on 258 

certain probability thresholds. A drought index of -1 to -1.49, -1.5 to -1.99, and less than -2 259 

corresponds to moderate, severe, and extreme drought, respectively. 260 

3.5 Drought characteristics 261 

For each drought index, several main characteristics of drought are studied: 262 

• Duration of drought 263 

• Frequency of drought (number of events) 264 
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• Intensity of drought 265 

The first two characteristics, i.e. the duration and number of events, are studied for the periods 266 

of 1970–1999 (historical), 2010–2039 (near future), 2040–2069 (intermediate future), and 267 

2070–2099 (distant future). Long-term trends in the intensity of drought are assessed for 90 268 

years of future period (2010–2099) using Mann-Kendall trend test as a rank-based non-269 

parametric test, independent of the statistical distribution of data (Kendall, 1948).  270 

4 RESULTS 271 

4.1 Calibration and validation of hydrologic model 272 

Table 3 shows the calibration and validation of the PRMS daily results. The model performs 273 

reasonably well at all 20 NRNI points except for Oak Grove (15th NRNI point) with a KGE of 274 

0.42 for calibration period and 0.38 for validation period. The validation performance of the 275 

model at the 19th NRNI point, i.e. TWSulliwan, the outlet of the WRB is 0.73 (KGE).  276 

-------------------------------- 277 

Table 3. Calibration and validation results at 20 NRNI points. The values in parentheses show 278 

the model performance over validation period. Note that the outlet of WRB is at TWSullivan, 279 

SVN5N. 280 

-------------------------------- 281 

4.2 Meteorological drought  282 

4.2.1 Meteorological drought frequency 283 

Figure 2 shows the changes in the number of meteorological drought events for 30-year periods 284 

of future scenarios compared to the historical period of 1970-1999 according to the two drought 285 

indices. An event is counted when the drought index is below -1 (moderate to extreme drought 286 

condition) and may range from a short period drought to a long-lasting drought of several 287 
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months. The historical observed drought events for SPEI and SPI are about 12 and 11, 288 

respectively. Comparing the results from SPEI and SPI, the latter shows a decrease in the 289 

number of drought events, since the SPI solely considers precipitation variations. Annual 290 

projections of climate variables are plotted in Figure S1, which reflects the long-term changes. 291 

Assessing the changes in frequency of drought using the SPEI reveals increasing number of 292 

drought events in most cases. In general, BCSD shows more increase in drought events than 293 

MACA. All SPEI projections indicate an increase in drought frequency for southern parts of 294 

the basin.  295 

-------------------------------- 296 

Figure 2. The change in the number of meteorological drought events for 30-year periods. Each 297 

plot is based on the ensemble mean of drought events from 10 GCMs. 298 

-------------------------------- 299 

4.2.2 Meteorological drought duration 300 

Figure 3 shows the spatially averaged duration of each meteorological drought class across the 301 

Willamette Basin. Duration of meteorological drought is calculated for SPEI and SPI using 302 

each of the 10 GCMs of MACA and BCSD datasets. Figure 3 provides the drought duration for 303 

each drought class in each time span. Drought duration calculated from GCMs are spatially 304 

averaged over the basin, and the ensemble mean of 10 GCMs is plotted in Figure 3. The 305 

historical observed duration of moderate, severe, and extreme drought are about 35, 12, and 11 306 

months, respectively. Comparing the two indices, SPEI indicates higher duration of drought 307 

than SPI. BCSD shows longer drought duration than MACA in most cases. Further, BCSD 308 

indicates a considerable increase in duration of extreme drought condition for both SPEI and 309 

SPI. For instance, considering SPI results for BCSD-RCP8.5, although the total duration of 310 

drought is ~60 months, duration of extreme drought shows about 50% and 100% increase for 311 
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near and intermediate future, respectively. On the other hand, SPI results from MACA dataset 312 

indicate a decrease in duration of moderate drought.  313 

-------------------------------- 314 

Figure 3. Duration of meteorological drought in 30-year intervals. 315 

-------------------------------- 316 

4.2.3 Meteorological drought intensity 317 

Figure 4 shows the linear trend of SPEI and SPI calculated for each GCM over the period of 318 

2010–2099 for both MACA and BCSD under RCP8.5. The top two rows show the trends for 319 

SPEI and the bottom two rows show the trends of SPI. Results of the 10 GCMs are plotted 320 

followed by the ensemble mean trend. In each plot, a negative trend (red color) indicates 321 

decreasing value of drought index and hence intensified future droughts, and vice versa. There 322 

is a large difference among the results of different models for SPEI. Comparing the results of 323 

SPEI and SPI, SPEI indicates more intensification in future droughts than SPI in most cases. 324 

Considering the ensemble mean of models (the right plots), SPI shows slightly positive trend 325 

(decreasing intensity of future droughts) while SPEI shows slightly negative trend (increasing 326 

intensity of future droughts). Comparing the RCP8.5 and RCP4.5 results (provided in the 327 

supplementary Figure S2), the latter seems to indicate attenuated values similar to those 328 

estimated from RCP8.5 in most cases. 329 

-------------------------------- 330 

Figure 4. Long-term trend of meteorological drought for each GCM in RCP8.5 scenario. Trend 331 

is calculated for the period of 2010–2099 for each GCM, with the ensemble mean trend plotted 332 

on the right. 333 

-------------------------------- 334 
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4.3 Hydrological drought  335 

4.3.1 Streamflow simulation 336 

Hydrologic simulations by the PRMS model and driven by the MACA and BCSD downscaled 337 

climate data are shown in Figure 5. In the figure, the observed streamflow is shown in green 338 

followed by the simulation results from the 10 GCMs for historical period (black), RCP4.5 339 

(blue), and RCP8.5 (red). The figure reveals the dual behavior of future streamflow in high-340 

flow and low-flow months. The results show a decreasing trend for simulated flow in spring 341 

(Apr, May, and Jun), whereas winters (Dec, Jan, and Feb) indicate an increase in the simulated 342 

streamflow. In other words, warmer winters result in higher winter flow and less snowpack to 343 

melt as spring flow. The model simulations by MACA and BCSD datasets indicate similar 344 

results, again with the dual pattern for both datasets. Comparing the streamflow projections 345 

from the two concertation pathways, it is seen that the RCP8.5 results in higher streamflow than 346 

RCP4.5 during December to February. Whereas during April to October, RCP8.5 projects lower 347 

streamflow than RCP4.5. Uncertainty associated with concentration pathways is mostly 348 

noticeable in December for both datasets. Further, historical GCM runs tend to underestimate 349 

observed streamflow in January and May, while overestimate it in November. For other months, 350 

both datasets show reasonable performance in the historical period. 351 

-------------------------------- 352 

Figure 5. Observed and simulated monthly streamflow forced by MACA (top) and BCSD 353 

(bottom) datasets at the outlet of Willamette Basin. 354 

-------------------------------- 355 

4.3.2 Hydrological drought frequency 356 

Standardized Streamflow Index (SSI) is calculated for each GCM in each dataset, and the 357 

number of hydrological drought events is extracted for 30-year intervals. Figure 6 shows the 358 
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number of hydrological drought events over 30-year historical and future periods. The 359 

observation indicates 9 hydrological droughts during the historical period over the basin. 360 

Considering inter-model variations (model uncertainty), INMCM4 shows the least number of 361 

drought events in almost all cases. Models show vast uncertainty in projected drought 362 

frequency. Some models show different behavior between RCP4.5 and RCP8.5; for instance, 363 

GFDL-ESM2G indicates the highest number of drought events in RCP4.5, while it shows 364 

infrequent events in RCP8.5 scenario. Comparing the two datasets, BCSD usually shows more 365 

frequent droughts than MACA. Generally, BCSD ensemble for RCP4.5 indicates the largest 366 

number of hydrological drought events among the four cases. The boxplot at the bottom of 367 

Figure 6 demonstrates that the median of the number of hydrological drought events (red line 368 

in the middle of each box) does not change significantly over time and all scenarios project 369 

about eight drought events in each 30-year time span. 370 

-------------------------------- 371 

Figure 6. The number of hydrological drought events for each GCM in 30-year intervals. 372 

MACA results are shown in the top panel followed by BCSD in the middle. The boxplots at the 373 

bottom are showing the spread of 10 GCMs for each time span. 374 

-------------------------------- 375 

4.3.3 Hydrological drought duration 376 

Figure 7 shows the total duration of hydrological droughts for each drought class, i.e. moderate, 377 

severe, and extreme, for 30-year periods. Duration of hydrological drought is estimated for each 378 

of the 10 GCMs, and the ensemble mean of 10 GCM results is plotted for each case. Results 379 

from MACA are plotted on top, followed by BCSD results plotted at the bottom. The observed 380 

duration of moderate, severe, and extreme hydrological droughts are 21, 9, and 13 months, 381 

respectively, which is slightly overestimated by the GCMs. Results from all scenarios indicate 382 

an increase in the duration of hydrological drought. Inter-decadal analysis of BCSD results 383 
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shows that there is not much change in the duration of moderate droughts. However, extreme 384 

droughts are expected to increase significantly, especially in distant future (2070–2099). 385 

Considering the total duration of the three drought classes, both datasets indicate about 50 386 

months of drought in historical period (1970–1999), and about 80 months for the distant future 387 

period (2070–2099); estimating 60% increase in duration of drought for distant future. Overall, 388 

BCSD shows longer duration of extreme drought than MACA. 389 

-------------------------------- 390 

Figure 7. Duration of hydrological drought in 30-year time intervals. In each case, duration of 391 

drought is calculated for each GCM, and then the ensemble mean of 10 GCMs is plotted in the 392 

figure. 393 

-------------------------------- 394 

4.3.4 Hydrological drought intensity 395 

In order to understand how the intensity of future hydrological droughts is changing, the Mann-396 

Kendall trend test is utilized and the linear trend of hydrological drought index (SSI) is 397 

calculated. This is done for each scenario for the period of 2010–2099. Figure 8 shows the trend 398 

of SSI calculated for each GCM. In the figure, MACA results are shown at the top, followed 399 

by BCSD. For each case, the p-value of trend test is computed at the significance level (α=0.05), 400 

and the models showing p-values less than 0.05 are considered to have significantly 401 

positive/negative trend, which are plotted with square marks. Overall, results from most models 402 

in both datasets indicate an increase in the intensity of future hydrological drought. Large 403 

uncertainty is found among different model projections. 404 

-------------------------------- 405 

Figure 8. Long-term trend of hydrological drought index. For each GCM, trend is calculated 406 

for the period of 2010–2099 for MACA (top) and BCSD (bottom) datasets. Significance of the 407 

trend is examined using the Mann-Kendall test. 408 



Drought in Willamette River Basin  

19 

 

-------------------------------- 409 

5 DISCUSSION 410 

Drought, as an environmental disaster, can impose serious challenges to human beings and 411 

economy, and is among the costliest natural hazards. Population growth and agricultural 412 

expansion have increased the water demand, and climate change is believed to exacerbate water 413 

security conditions (Kong et al., 2016; Sun et al., 2015b). Drought is a complex phenomenon 414 

and it is affected by different variables, and increase in only temperature does not necessarily 415 

translate to drought (Sheffield et al., 2012).  416 

Model uncertainty is a primary source of uncertainty in future climate projections. Therefore, 417 

selecting the models with higher accuracy is crucial for subsiding the uncertainties. Many 418 

studies evaluated the accuracy of climate models, few of which assessed GCM fidelity in terms 419 

of drought projection (Abatzoglou and Rupp, 2017). Such evaluations can reveal the low-420 

frequency internal climate variability of models.  421 

In order to understand the accuracy of GCMs for drought projection, drought indices calculated 422 

from each GCM is compared to the observed drought indices using Taylor diagrams (Taylor, 423 

2000), and the results are shown in Figure S3. While SPI and SPEI indicate similar patterns, 424 

MACA and BCSD exhibit differences. For instance, 8 out of 10 MACA models show negative 425 

correlation with observed SPI, whereas half of the BCSD models indicate positive correlation. 426 

In general, BCSD shows lower root mean square difference than MACA for meteorological 427 

drought simulations. For the case of hydrological drought (SSI), both MACA and BCSD 428 

indicate similar results, with the former having slightly lower RMS. Generally, there is low 429 

similarity in the performance of the GCMs for meteorological and hydrological droughts. 430 

Mizukami et al. (2016) assessed three downscaling techniques and demonstrated that the results 431 

can be different as high as 500 mm/year for annual precipitation and 0.4°C for mean annual 432 

temperature. Such differences are not uniform among different months and since the 433 
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downscaling techniques are usually applied separately for each month, the intra-seasonal 434 

differences (which are utilized for drought assessment) would be even larger (Rana and 435 

Moradkhani, 2015). Recently, Ahmadalipour et al. (2017a) performed an uncertainty 436 

assessment of projected climate variables across the Columbia River Basin. They concluded 437 

that downscaling uncertainty contributes a considerable share in the total uncertainty, especially 438 

in summer, and it can be larger than the RCP uncertainty for precipitation. Therefore, it can be 439 

concluded that downscaling uncertainty can substantially affect the results of drought analysis, 440 

especially at regional analyses. 441 

The results of projected meteorological and hydrological droughts show different 442 

characteristics. For instance, SPI indicates a decrease in the number of meteorological drought 443 

events, while SSI shows a slight increase in the number of hydrological drought events (Figures 444 

2 and 6). BCSD shows increasing drought duration in most cases for both meteorological and 445 

hydrological drought projections, whereas MACA indicates decreasing drought duration of 446 

SPI, insignificant change for duration of SPEI, and an increase for duration of future 447 

hydrological droughts (Figures 3 and 7). Furthermore, in terms of drought intensity, both 448 

meteorological drought indices show decreasing intensity in RCP4.5 scenario. This is also the 449 

case for SPI results of RCP8.5, and only SPEI in RCP8.5 projects an intensification in 450 

meteorological drought (Figure 4).  451 

The difference in projected characteristics of meteorological and hydrological drought can be 452 

primarily related to the changes in precipitation and temperature patterns affecting snowpack, 453 

snowmelt, and soil moisture. The long-term changes of precipitation, and maximum and 454 

minimum temperature across Willamette Basin are plotted in Figure 9 and Figure S1 for both 455 

datasets and both scenarios. Figure 9 shows the spatial changes for near future and distant 456 

future. From the figure, increase in TMax and TMin reveal similar spatial patterns in both 457 

datasets. RCP4.5 and RCP8.5 indicate similar temperature increase in near future with almost 458 
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1.4°C increase. For distant future, RCP4.5 shows 2.2°C temperature increase, while RCP8.5 459 

projects a temperature increase of about 5°C. For precipitation, most cases indicate an increase 460 

in precipitation at western coastal regions as well as the eastern mountainous areas. Slightly 461 

decreasing precipitation is projected in near future for the central regions of the basin. 462 

-------------------------------- 463 

Figure 9. Future changes of climate variables in near future and distant future compared to the 464 

historical observation. In each plot, the ensemble mean of 10 GCM projections is compared to 465 

the historical observation. 466 

-------------------------------- 467 

Besides the undeniable role of precipitation in meteorological drought, temperature changes 468 

show inevitable effects. From Figure 9, significant increase is found in minimum and maximum 469 

future temperature. An explicit effect of the rise in temperature is that it increases 470 

evapotranspiration, reduces soil moisture, and increases infiltration and percolation, all of 471 

which consequently decrease runoff and streamflow. However, a more crucial impact of 472 

temperature rise is its effect on snowpack and snowmelt (Hamlet et al., 2005). The rise of 473 

temperature may alter snowfall to rainfall, which would decrease the amount of snowpack 474 

stored and increase the streamflow in high-flow seasons (Knowles et al., 2006). Furthermore, 475 

increase in temperature may result in earlier spring onset and earlier snowmelt (Cayan et al., 476 

2001). Since Willamette Basin receives precipitation mostly in high-flow months, discharge is 477 

mainly driven by snowmelt in low-flow season (Dralle et al., 2015). Therefore, a decrease in 478 

snowpack can substantially affect the summer discharge, which consequently results in more 479 

severe hydrological droughts. 480 

The above-mentioned effects of temperature on snowpack can explain the patterns of monthly 481 

streamflow trends (shown in Figure 5) as well as the dissimilarities between meteorological and 482 

hydrological drought characteristics of future. Moreover, increase in evapotranspiration will 483 
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affect the irrigation water demand, and would alter characteristics of agricultural droughts. 484 

Therefore, there is a need to objectively analyze the role of hydrological states and fluxes 485 

(runoff, soil moisture, evapotranspiration, and snow water equivalent) in hydrological droughts, 486 

and understand the controlling factor of drought. 487 

The current study identified possible future changes of drought characteristics in a region with 488 

abundant water resources, which is expected to receive more precipitation in future. The results 489 

corroborated that drought can be intensified in future, notwithstanding the precipitation 490 

increase.  491 

6 SUMMARY AND CONCLUSION 492 

This study investigated the changes in hydro-meteorological drought characteristics over the 493 

Willamette basin using downscaled CMIP5 climate datasets. The results are based on a 494 

simulation approach using the outputs of an ensemble of 10 pre-selected climate models to run 495 

a hydrologic model. Different spatiotemporal characteristics of drought are analyzed using three 496 

drought indices, i.e. Standardized Precipitation Index, Standardized Precipitation 497 

Evapotranspiration Index, and Standardized Streamflow Index. Different sources of uncertainty 498 

arising from the GCMs, downscaling methods, and concentration pathways are also quantified 499 

for the period of 1970-1999 and 2010-2099. For hydrological simulations, PRMS model is 500 

implemented using the projections of each GCM as forcing. 501 

The conclusions from the results are summarized as follows:  502 

• The calibration results revealed that streamflow simulations from the PRMS are in good 503 

agreement with observation for almost all calibration points.  504 

• Based on the results of the two meteorological drought indices used for the current and 505 

future climate, significant changes are anticipated for the future drought characteristics 506 

of the Basin. Considering the SPEI results, the frequency and duration of meteorological 507 
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drought events is expected to increase in most cases. Whereas SPI indicates decreasing 508 

intensity and frequency in most cases.  509 

• According to the results, the duration and intensity of hydrological drought events are 510 

estimated to increase. Furthermore, the results show increasing trend in streamflow of 511 

high-flow months and decreasing trend in streamflow of low-flow months, indicating 512 

higher risk of winter floods and summer droughts. 513 

• The temperature changes will alter the amount of snowpack as well as the snowmelt 514 

onset, which will change the streamflow patterns, resulting in exacerbated hydrological 515 

droughts. 516 

• The comparative analysis of uncertainty from different sources considered in this study 517 

shows that the GCM uncertainty is the highest among other sources. 518 

This study confirms that the concurrent analysis of meteorological and hydrological droughts 519 

is necessary and requires more attention as they may demonstrate distinct trends and 520 

characteristics. More importantly, studying meteorological drought using the SPI is inadequate 521 

for analyzing the impacts of climate change, and the role of temperature should also be 522 

considered in drought assessments. 523 

ACKNOWLEDGEMENTS 524 

The authors are thankful for the financial support provided by NOAA-MAPP program, grant 525 

NA140AR4310234. 526 

 527 

REFERENCES 528 

Abatzoglou, J.T., Barbero, R., Wolf, J.W., Holden, Z.A., 2014. Tracking Interannual 529 

Streamflow Variability with Drought Indices in the U.S. Pacific Northwest. J. 530 

Hydrometeorol. 15, 1900–1912. doi:10.1175/JHM-D-13-0167.1 531 

Abatzoglou, J.T., Brown, T.J., 2012. A comparison of statistical downscaling methods suited 532 

for wildfire applications. Int. J. Climatol. 32, 772–780. doi:10.1002/joc.2312 533 



Drought in Willamette River Basin  

24 

 

Abatzoglou, J.T., Rupp, D.E., 2017. Evaluating climate model simulations of drought for the 534 

northwestern United States. Int. J. Climatol. 535 

Ahmadalipour, A., Moradkhani, H., Rana, A., 2017a. Accounting for downscaling and model 536 

uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. 537 

Clim. Dyn. 1–17. doi:10.1007/s00382-017-3639-4 538 

Ahmadalipour, A., Moradkhani, H., Svoboda, M., 2016. Centennial drought outlook over the 539 

CONUS using NASA-NEX downscaled climate ensemble. Int. J. Climatol. n/a-n/a. 540 

doi:10.1002/joc.4859 541 

Ahmadalipour, A., Moradkhani, H., Yan, H., Zarekarizi, M., 2017b. Remote Sensing of 542 

Drought: Vegetation, Soil Moisture and Data Assimilation, in: Remote Sensing of 543 

Hydrological Extremes. Springer International Publishing Switzerland, pp. 121–149. 544 

Ahmadalipour, A., Rana, A., Moradkhani, H., Sharma, A., 2015. Multi-criteria evaluation of 545 

CMIP5 GCMs for climate change impact analysis. Theor. Appl. Climatol. 546 

doi:10.1007/s00704-015-1695-4 547 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for 548 

computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 549 

300, D05109. 550 

Anderson, M.C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., Wardlow, B., Pimstein, 551 

A., 2013. An intercomparison of drought indicators based on thermal remote sensing and 552 

NLDAS-2 simulations with US Drought Monitor classifications. J. Hydrometeorol. 14, 553 

1035–1056. 554 

Azmi, M., Rüdiger, C., Walker, J.P., 2016. A data fusion‐based drought index. Water Resour. 555 

Res. 556 

Berghuijs, W.R., Woods, R.A., Hrachowitz, M., 2014. A precipitation shift from snow towards 557 

rain leads to a decrease in streamflow. Nat. Clim. Chang. 4, 583–586. 558 

Cayan, D.R., Dettinger, M.D., Kammerdiener, S.A., Caprio, J.M., Peterson, D.H., 2001. 559 

Changes in the onset of spring in the western United States. Bull. Am. Meteorol. Soc. 82, 560 

399–415. 561 

Chen, H., Sun, J., 2017. Anthropogenic warming has caused hot droughts more frequently in 562 

China. J. Hydrol. 544, 306–318. 563 

Dai, A., 2012. Increasing drought under global warming in observations and models. Nat. Clim. 564 

Chang. 3, 52–58. doi:10.1038/nclimate1633 565 

Dai, A., 2011. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Chang. 566 

2, 45–65. 567 

Demirel, M.C., Booij, M.J., Hoekstra, A.Y., 2013. Identification of appropriate lags and 568 

temporal resolutions for low flow indicators in the River Rhine to forecast low flows with 569 

different lead times. Hydrol. Process. 27, 2742–2758. doi:10.1002/hyp.9402 570 

Diffenbaugh, N.S., Scherer, M., Ashfaq, M., 2013. Response of snow-dependent hydrologic 571 

extremes to continued global warming. Nat. Clim. Chang. 3, 379–384. 572 

Diffenbaugh, N.S., Swain, D.L., Touma, D., 2015. Anthropogenic warming has increased 573 

drought risk in California. Proc. Natl. Acad. Sci. 112, 201422385. 574 

doi:10.1073/pnas.1422385112 575 

Donohue, R.J., McVicar, T.R., Roderick, M.L., 2010. Assessing the ability of potential 576 

evaporation formulations to capture the dynamics in evaporative demand within a 577 



Drought in Willamette River Basin  

25 

 

changing climate. J. Hydrol. 386, 186–197. 578 

Dralle, D.N., Karst, N.J., Thompson, S.E., 2015. Dry season streamflow persistence in seasonal 579 

climates. Water Resour. Res. 580 

Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach for 581 

effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521. 582 

doi:10.1007/BF00939380 583 

Feng, X., Porporato, A., Rodriguez-Iturbe, I., 2013. Changes in rainfall seasonality in the 584 

tropics. Nat. Clim. Chang. 3, 811–815. 585 

Gupta, H. V, Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean 586 

squared error and NSE performance criteria: Implications for improving hydrological 587 

modelling. J. Hydrol. 377, 80–91. 588 

Halmstad, A., Najafi, M.R., Moradkhani, H., 2013. Analysis of precipitation extremes with the 589 

assessment of regional climate models over the Willamette River Basin, USA. Hydrol. 590 

Process. 27, 2579–2590. doi:10.1002/hyp.9376 591 

Hamlet, A.F., Mote, P.W., Clark, M.P., Lettenmaier, D.P., 2005. Effects of temperature and 592 

precipitation variability on snowpack trends in the Western United States*. J. Clim. 18, 593 

4545–4561. 594 

Hannaford, J., Lloyd‐Hughes, B., Keef, C., Parry, S., Prudhomme, C., 2011. Examining the 595 

large‐scale spatial coherence of European drought using regional indicators of 596 

precipitation and streamflow deficit. Hydrol. Process. 25, 1146–1162. 597 

Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. 598 

Appl. Eng. Agric. 1, 96–99. 599 

Hay, L.E., Leavesley, G.H., Clark, M.P., Markstrom, S.L., Viger, R.J., Umemoto, M., 2006. 600 

Step Wise, Multiple Objective Calibration of A Hydrologic Model For A Snowmelt 601 

Dominated Basin. J. Am. Water Resour. Assoc. 42, 877–890. doi:10.1111/j.1752-602 

1688.2006.tb04501.x 603 

Hay, L.E., Umemoto, M., 2007. Multiple-objective stepwise calibration using Luca. US 604 

Geological Survey. 605 

Huang, S., Huang, Q., Chang, J., Leng, G., 2015. Linkages between hydrological drought, 606 

climate indices and human activities: a case study in the Columbia River basin. Int. J. 607 

Climatol. n/a-n/a. doi:10.1002/joc.4344 608 

Jeong, D. Il, Sushama, L., Naveed Khaliq, M., 2014. The role of temperature in drought 609 

projections over North America. Clim. Change 127, 289–303. doi:10.1007/s10584-014-610 

1248-3 611 

Jiang, M., Felzer, B.S., Sahagian, D., 2016. Predictability of Precipitation Over the 612 

Conterminous US Based on the CMIP5 Multi-Model Ensemble. Sci. Rep. 6. 613 

Jung, I.-W., Chang, H., Moradkhani, H., 2011. Quantifying uncertainty in urban flooding 614 

analysis considering hydro-climatic projection and urban development effects. Hydrol. 615 

Earth Syst. Sci. 15, 617–633. doi:10.5194/hess-15-617-2011 616 

Jung, I.W., Chang, H., 2012. Climate change impacts on spatial patterns in drought risk in the 617 

Willamette River Basin, Oregon, USA. Theor. Appl. Climatol. 108, 355–371. 618 

Kendall, M.G., 1948. Rank correlation methods. 619 

Kharin, V. V., Zwiers, F.W., Zhang, X., Wehner, M., 2013. Changes in temperature and 620 

precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357. 621 



Drought in Willamette River Basin  

26 

 

doi:10.1007/s10584-013-0705-8 622 

Knowles, N., Dettinger, M.D., Cayan, D.R., 2006. Trends in snowfall versus rainfall in the 623 

western United States. J. Clim. 19, 4545–4559. 624 

Kong, D., Miao, C., Wu, J., Duan, Q., 2016. Impact assessment of climate change and human 625 

activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecol. Eng. 91, 566–626 

573. 627 

Leavesley, G.H., Stannard, L.G., Singh, V.P., 1995. The precipitation-runoff modeling system-628 

PRMS. Comput. Model. watershed Hydrol. 281–310. 629 

Legesse, D., Vallet-Coulomb, C., Gasse, F., 2003. Hydrological response of a catchment to 630 

climate and land use changes in Tropical Africa: case study South Central Ethiopia. J. 631 

Hydrol. 275, 67–85. doi:10.1016/S0022-1694(03)00019-2 632 

Livneh, B., Rosenberg, E.A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K.M., Maurer, E.P., 633 

Lettenmaier, D.P., 2013. A Long-Term Hydrologically Based Dataset of Land Surface 634 

Fluxes and States for the Conterminous United States: Update and Extensions*. J. Clim. 635 

26, 9384–9392. doi:10.1175/JCLI-D-12-00508.1 636 

Lu, J., Sun, G., Mcnulty, S.G., Amatya, D.M., 2005. a Comparison of Six Potential 637 

Evapotranspiration Methods for Regional Use in the Southeastern United States 1 29414, 638 

621–633. 639 

Mazrooei, A., Sinha, T., Sankarasubramanian, A., Kumar, S., Peters‐Lidard, C.D., 2015. 640 

Decomposition of sources of errors in seasonal streamflow forecasting over the US 641 

Sunbelt. J. Geophys. Res. Atmos. 120. 642 

McKee, T.B., Doeskin, N.J., Kleist, J., 1993. The relationship of drought frequency and 643 

duration to time scales, in: 8th Conf. on Applied Climatology. Anaheim, Canada OR  - 644 

Am. Meteorol. Soc., pp. 179–184. 645 

Mizukami, N., Clark, M.P., Gutmann, E.D., Mendoza, P.A., Newman, A.J., Nijssen, B., Livneh, 646 

B., Hay, L.E., Arnold, J.R., Brekke, L.D., 2016. Implications of the methodological 647 

choices for hydrologic portrayals of climate change over the contiguous United States: 648 

statistically downscaled forcing data and hydrologic models. J. Hydrometeorol. 17, 73–649 

98. 650 

Mote, P.W., Salathé, E.P., 2010. Future climate in the Pacific Northwest. Clim. Change 102, 651 

29–50. doi:10.1007/s10584-010-9848-z 652 

Najafi, M.R., Moradkhani, H., Jung, I.W., 2011. Assessing the uncertainties of hydrologic 653 

model selection in climate change impact studies. Hydrol. Process. 25, 2814–2826. 654 

doi:10.1002/hyp.8043 655 

Nalbantis, I., 2008. Evaluation of a Hydrological Drought Index 67–77. 656 

Nalbantis, I., Tsakiris, G., 2009. Assessment of hydrological drought revisited. Water Resour. 657 

Manag. 23, 881–897. 658 

Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models part I -- A 659 

discussion of principles. J. Hydrol. 10, 282–290. 660 

Palmer, W.C., 1965. Meteorological drought. US Department of Commerce, Weather Bureau 661 

Washington, DC, USA. 662 

Rana, A., Moradkhani, H., 2015. Spatial, temporal and frequency based climate change 663 

assessment in Columbia River Basin using multi downscaled-Scenarios. Clim. Dyn. 1–22. 664 

Risley, J., Moradkhani, H., Hay, L., Markstrom, S., 2011. Statistical Comparisons of 665 



Drought in Willamette River Basin  

27 

 

Watershed-Scale Response to Climate Change in Selected Basins across the United States. 666 

Earth Interact. 15, 1–26. doi:10.1175/2010EI364.1 667 

Safeeq, M., Grant, G.E., Lewis, S.L., Kramer, M.G., Staab, B., 2014. A geohydrologic 668 

framework for characterizing summer streamflow sensitivity to climate warming in the 669 

Pacific Northwest, USA. Hydrol. Earth Syst. Sci. 11, 3693–3710. doi:10.5194/hessd-11-670 

3315-2014 671 

Schyns, J.F., Hoekstra, A.Y., Booij, M.J., 2015. Review and classification of indicators of green 672 

water availability and scarcity. Hydrol. Earth Syst. Sci. Discuss. 12, 5519–5564. 673 

doi:10.5194/hessd-12-5519-2015 674 

Sheffield, J., Wood, E.F., Roderick, M.L., 2012. Little change in global drought over the past 675 

60 years. Nature 491, 435–8. doi:10.1038/nature11575 676 

Shukla, S., Safeeq, M., Aghakouchak, A., Guan, K., Funk, C., 2015. Temperature impacts on 677 

the water year 2014 drought in California 1–10. doi:10.1002/2015GL063666.Received 678 

Shukla, S., Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic 679 

drought. Geophys. Res. Lett. 35. 680 

Sima, S., Ahmadalipour, A., Tajrishy, M., 2013. Mapping surface temperature in a hyper-saline 681 

lake and investigating the effect of temperature distribution on the lake evaporation. 682 

Remote Sens. Environ. 136, 374–385. 683 

Sohrabi, M.M., Ryu, J.H., Abatzoglou, J., Tracy, J., 2015. Development of Soil Moisture 684 

Drought Index to Characterize Droughts. J. Hydrol. Eng. 4015025. 685 

doi:10.1061/(ASCE)HE.1943-5584.0001213 686 

Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., Van Loon, A.F., Stahl, K., 2015. Candidate 687 

Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 4040, 688 

n/a-n/a. doi:10.1002/joc.4267 689 

Strzepek, K., Yohe, G., Neumann, J., Boehlert, B., 2010. Characterizing changes in drought 690 

risk for the United States from climate change. Environ. Res. Lett. 5, 44012. 691 

doi:10.1088/1748-9326/5/4/044012 692 

Sun, Q., Miao, C., Duan, Q., 2015a. Extreme climate events and agricultural climate indices in 693 

China: CMIP5 model evaluation and projections. Int. J. Climatol. n/a-n/a. 694 

doi:10.1002/joc.4328 695 

Sun, Q., Miao, C., Duan, Q., 2015b. Comparative analysis of CMIP3 and CMIP5 global climate 696 

models for simulating the daily mean, maximum, and minimum temperatures and daily 697 

precipitation over China. J. Geophys. Res. Atmos. 120, 4806–4824. 698 

Swain, S., Hayhoe, K., 2015. CMIP5 projected changes in spring and summer drought and wet 699 

conditions over North America. Clim. Dyn. 44, 2737–2750. doi:10.1007/s00382-014-700 

2255-9 701 

Taylor, K.E., 2000. Summarizing multiple aspects of model performance in a single diagram. 702 

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore 703 

National Laboratory, University of California. 704 

Taylor, K.E., Stouffer, R.J., Meehl, G. a., 2012. An Overview of CMIP5 and the Experiment 705 

Design. Bull. Am. Meteorol. Soc. 93, 485–498. doi:10.1175/BAMS-D-11-00094.1 706 

Touma, D., Ashfaq, M., Nayak, M. a., Kao, S.-C., Diffenbaugh, N.S., 2015. A multi-model and 707 

multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 526, 196–708 

207. doi:10.1016/j.jhydrol.2014.12.011 709 



Drought in Willamette River Basin  

28 

 

Turner, D.P., Conklin, D.R., Bolte, J.P., 2015. Projected climate change impacts on forest land 710 

cover and land use over the Willamette River Basin, Oregon, USA. Clim. Change 133, 711 

335–348. 712 

Van Loon, A.F., 2015. Hydrological drought explained. Wiley Interdiscip. Rev. Water n/a-n/a. 713 

doi:10.1002/wat2.1085 714 

Van Loon, A.F., Van Lanen, H.A.J., 2013. Making the distinction between water scarcity and 715 

drought using an observation-modeling framework. Water Resour. Res. 49, 1483–1502. 716 

doi:10.1002/wrcr.20147 717 

Vicente-Serrano, S., Cabello, D., Tomás-Burguera, M., Martín-Hernández, N., Beguería, S., 718 

Azorin-Molina, C., Kenawy, A., 2015. Drought Variability and Land Degradation in 719 

Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–720 

2011). Remote Sens. 7, 4391–4423. doi:10.3390/rs70404391 721 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index 722 

sensitive to global warming: The standardized precipitation evapotranspiration index. J. 723 

Clim. 23, 1696–1718. doi:10.1175/2009JCLI2909.1 724 

Williams,  a. P., Seager, R., Abatzoglou, J.T., Cook, B.I., Smerdon, J.E., Cook, E.R., 2015. 725 

Contribution of anthropogenic warming to California drought during 2012-2014. 726 

Geophys. Res. Lett. in press, 1–10. doi:10.1002/2015GL064924 727 

 728 





















Table 1. The 10 GCMs used in this study and their characteristics.  

Index Model name Institute 

Original 

Resolution 

(Lon × Lat) 

Vertical 

levels in 

Atmosphere 

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 2.8 × 2.8 26 

2 CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8 35 

3 CCSM4 National Center of Atmospheric Research, USA 1.25 × 0.94 26 

4 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

5 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

6 INMCM4 Institute for Numerical Mathematics, Russia 2.0 × 1.5 21 

7 IPSL-CM5A-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

8 IPSL-CM5A-MR Institut Pierre Simon Laplace, France 2.5 × 1.25 39 

9 IPSL-CM5B-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

10 MIROC5 

Atmosphere and Ocean Research Institute (The University of Tokyo), 

National Institute for Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

1.4 × 1.4 40 

 

 

 

 



Table 2. The parameters calibrated in each step of the calibration process. 

Parameter Min Max Parameter Description 

adjmix_rain_hru_mo 0.6 1.4 Factor to adjust rain proportion in mixed rain/ snow event 

cecn_coef 2 10 Convection condensation energy coefficient 

dday_intcp_hru -60 10 Intercept in relationship 

dday_slope_mth 0.2 0.9 Coefficient in relationship 

dprst_depth_avg 48 250 Average depth of depressions at maximum storage capacity.  

dprst_flow_coef 0 0.3 Coefficient in linear flow routing equation for open surface depressions.  

dprst_seep_rate_open 0 0 Coefficient used in linear seepage flow equation for open surface depressions. 

emis_noppt 0.8 1 Emissivity of air on days without precipitation 

fastcoef_lin  0 0.8 Coefficient to route preferential-flow storage down slope 

freeh2o_cap 0 0.2 Free-water holding capacity of snowpack 

gwflow_coef 0 0.5 Linear coefficient to compute groundwater discharge from each GWR 

gwsink_coef 0 0.1 percent 

gwstor_min 0 1 Depth (inches) 

jh_coef_hru_mth 0 0.1 Monthly air temperature coefficient used in Jensen-Haise potential ET computations 

K_coef 1 24 Travel time of flood wave from one segment to the next downstream segment 

op_flow_thres  0.8 1 Fraction of open depression storage above which surface runoff occurs for each time step 

potet_sublim 0.1 0.8 Proportion of PET that is sublimated from snow surface 

pref_flow_den  0 0.1 Fraction of the soil zone in which preferential flow occurs 

rain_cbh_adj_mo 0.6 1.4 Precipitation adjust factor for rain days 

sat_threshold  1 15 Water holding capacity of the gravity and preferential flow reservoirs.  

slowcoef_lin 0 0.5 Linear coefficient in equation to route gravity-reservoir storage down slope for each HRU 

slowcoef_sq 0.1 0.3 Non-linear coefficient in equation to route gravity- reservoir storage down slope for each HRU.  

smidx_coef  0 0.1 Coefficient in non-linear surface runoff contributing area algorithm 

snow_cbh_adj_mo  0.6 1.4 Precipitation adjust factor for snow days 

soil_moist_max 2 10 Maximum available water holding capacity of soil profile 

soil_rechr_max 1.5 5 Maximum available water holding capacity for soil recharge zone 

soil2gw_max 0 0.5 Maximum amount of capillary reservoir excess routed directly to the GWR 



sro_to_dprst  0 1 Fraction of pervious and impervious surface runoff that flows into surface depressions 

ssr2gw_rate 0.1 0.8 Linear coefficient used to route water from the gravity reservoir to the GWR 

tmax_allrain_hru_mo 34 45 If HRU tmax exceeds this value, precipitation assumed rain 

tmax_allsnow_hru 30 40 If HRU tmax is below this value, precipitation assumed snow 

va_open_exp  0 1 
Coefficient relating maximum surface area to the fraction that open depressions are full to computed 

surface area 

 

 

Table 3. Calibration and validation results at 20 NRNI points. The values in parentheses show the model performance over validation 

period. Note that the outlet of WRB is at TWSullivan, SVN5N. 

     Calibration (1979-2003) and Validation (2004-2008) 

No NRNI_point ID Lat Lon KGE (-) NSE (-) RMSE (cfs) Bias (%) 

1 Albany ALB5N 44.63333 -123.1 0.74 (0.75) 0.64 (0.58) 9422 (9415) 0.32 (0.35) 

2 Blue_River BLU5N 44.1625 -122.332 0.69 (0.61) 0.73 (0.59) 380 (448) 0.39 (0.47) 

3 Cougar CGR5N 44.13333 -122.233 0.84 (0.77) 0.68 (0.55) 495 (538) 0.30 (0.34) 

4 Cottage_Grove COT5N 43.7208 -123.049 0.86 (0.85) 0.76 (0.69) 185 (208) 0.35 (0.41) 

5 Detroit DET5N 44.75 -122.283 0.78 (0.68) 0.61 (0.43) 1476 (1720) 0.34 (0.40) 

6 Dexter DEX5N 43.93472 -122.833 0.74 (0.70) 0.59 (0.46) 2073 (2216) 0.30 (0.37) 

7 Dorena DOR5N 43.78472 -122.985 0.67 (0.68) 0.68 (0.63) 636 (629) 0.43 (0.47) 

8 Falls_Creek FAL5N 43.9271 -122.863 0.76 (0.76) 0.55 (0.54) 486 (492) 0.36 (0.43) 

9 Foster FOS5N 44.40139 -122.685 0.78 (0.74) 0.58 (0.52) 2092 (2284) 0.37 (0.47) 

10 Fern_Ridge FRN5N 44.11806 -123.285 0.86 (0.79) 0.75 (0.67) 446 (501) 0.49 (0.55) 

11 Green_Peter GPR5N 44.4493 -122.55 0.70 (0.69) 0.48 (0.43) 1414 (1510) 0.48 (0.58) 

12 Hills_Creek HCR5N 43.71833 -122.434 0.82 (0.78) 0.67 (0.57) 649 (729) 0.26 (0.33) 

13 Leaburg LEA5N 44.125 -122.469 0.74 (0.68) 0.62 (0.58) 2497 (2496) 0.29 (0.38) 

14 North_Fork NFK5N 45.16722 -122.155 0.69 (0.66) 0.69 (0.55) 1385 (1695) 0.39 (0.46) 

15 Oak_Grove OAK5N 45.125 -122.072 0.42 (0.38) 0.45 (0.39) 368 (409) 0.51 (0.56) 



16 River_Mill RML5N 45.3 -122.353 0.81 (0.69) 0.67 (0.49) 1597 (2023) 0.32 (0.42) 

17 Salem SLM5N 44.93333 -123.033 0.71 (0.75) 0.53 (0.54) 15264 (15296) 0.36 (0.40) 

18 Smith_Reservoir SMH5N 44.30556 -122.044 0.74 (0.52) 0.56 (0.01) 81 (109) 0.53 (0.75) 

19 TWSullivan SVN5N 45.34861 -122.619 0.65 (0.73) 0.41 (0.54) 22181 (20213) 0.40 (0.40) 

20 Walterville WAV5N 44.07 -122.77 0.69 (0.64) 0.51 (0.48) 2856 (2803) 0.33 (0.40) 

 

 




